fibonacci sequence list
Which movie do you think matches the uniqueness of the Fibonacci sequence? The sequence formed by Fibonacci numbers is called the Fibonacci sequence. Cool Conversion. The sequence starts like this: 0, 1, 1, 2, 3, 4, 8, 13, 21, 34 In particular, it is shown how a generalised Fibonacci sequence enters the control function of finite-horizon dynamic optimisation problems with one state and one control variable. These numbers were first noted by the medieval Italian mathematician Leonardo Pisano (“Fibonacci”) in his Liber abaci (1202; “Book of the As you may have guessed by the curve in the box example above, shells follow the progressive proportional increase of the Fibonacci Sequence. 558 188 Add to List Share The Fibonacci numbers , commonly denoted F(n) form a sequence, called the Fibonacci sequence , such that each number is the sum of … Index numbers that are prime are shown like this. A first 100 Fibonacci Series number. The Fibonacci sequence is a sequence of integers, starting from 0 and 1, such that the sum of the preceding two integers is the following number in the sequence. Send This Result Download PDF Result. The first 300 Fibonacci numbers n : F(n)=factorisation 0 : 0 1 : 1 2 : 1 3 : 2 4 : 3 5 : 5 6 : 8 = 23 7 : 13 8 : 21 = 3 x 7 9 : 34 = 2 x 17 10 : 55 = 5 x 11 11 : 89 12 : 144 = 24 x 32 13 : 233 14 : 377 = 13 x 29 15 : 610 = 2 x 5 x 61 16 : 987 = 3 x 7 x 47 17 : 1597 18 : 2584 = 23 x 17 x 19 19 : 4181 = 37 x 113 20 : 6765 = 3 x 5 x 11 x 41 21 : 10946 = 2 x 13 x 421 22 : 17711 = 89 x 199 23 : 28657 24 : 46368 = 25 x 32 x 7 x 23 25 : 75025 = 52 x 3001 26 : 121393 = 233 x 521 27 : 196418 = 2 x 17 x 53 x 109 28 : 317811 = 3 x 13 x 29 x 281 29 : 514229 30 : 832040 = 23 x 5 x 11 x 31 x 61 31 : 1346269 = 557 x 2417 32 : 2178309 = 3 x 7 x 47 x 2207 33 : 3524578 = 2 x 89 x 19801 34 : 5702887 = 1597 x 3571 35 : 9227465 = 5 x 13 x 141961 36 : 14930352 = 24 x 33 x 17 x 19 x 107 37 : 24157817 = 73 x 149 x 2221 38 : 39088169 = 37 x 113 x 9349 39 : 63245986 = 2 x 233 x 135721 40 : 102334155 = 3 x 5 x 7 x 11 x 41 x 2161 41 : 165580141 = 2789 x 59369 42 : 267914296 = 23 x 13 x 29 x 211 x 421 43 : 433494437 44 : 701408733 = 3 x 43 x 89 x 199 x 307 45 : 1134903170 = 2 x 5 x 17 x 61 x 109441 46 : 1836311903 = 139 x 461 x 28657 47 : 2971215073 48 : 4807526976 = 26 x 32 x 7 x 23 x 47 x 1103 49 : 7778742049 = 13 x 97 x 6168709 50 : 12586269025 = 52 x 11 x 101 x 151 x 3001 51 : 20365011074 = 2 x 1597 x 6376021 52 : 32951280099 = 3 x 233 x 521 x 90481 53 : 53316291173 = 953 x 55945741 54 : 86267571272 = 23 x 17 x 19 x 53 x 109 x 5779 55 : 139583862445 = 5 x 89 x 661 x 474541 56 : 225851433717 = 3 x 72 x 13 x 29 x 281 x 14503 57 : 365435296162 = 2 x 37 x 113 x 797 x 54833 58 : 591286729879 = 59 x 19489 x 514229 59 : 956722026041 = 353 x 2710260697 60 : 1548008755920 = 24 x 32 x 5 x 11 x 31 x 41 x 61 x 2521 61 : 2504730781961 = 4513 x 555003497 62 : 4052739537881 = 557 x 2417 x 3010349 63 : 6557470319842 = 2 x 13 x 17 x 421 x 35239681 64 : 10610209857723 = 3 x 7 x 47 x 1087 x 2207 x 4481 65 : 17167680177565 = 5 x 233 x 14736206161 66 : 27777890035288 = 23 x 89 x 199 x 9901 x 19801 67 : 44945570212853 = 269 x 116849 x 1429913 68 : 72723460248141 = 3 x 67 x 1597 x 3571 x 63443 69 : 117669030460994 = 2 x 137 x 829 x 18077 x 28657 70 : 190392490709135 = 5 x 11 x 13 x 29 x 71 x 911 x 141961 71 : 308061521170129 = 6673 x 46165371073 72 : 498454011879264 = 25 x 33 x 7 x 17 x 19 x 23 x 107 x 103681 73 : 806515533049393 = 9375829 x 86020717 74 : 1304969544928657 = 73 x 149 x 2221 x 54018521 75 : 2111485077978050 = 2 x 52 x 61 x 3001 x 230686501 76 : 3416454622906707 = 3 x 37 x 113 x 9349 x 29134601 77 : 5527939700884757 = 13 x 89 x 988681 x 4832521 78 : 8944394323791464 = 23 x 79 x 233 x 521 x 859 x 135721 79 : 14472334024676221 = 157 x 92180471494753 80 : 23416728348467685 = 3 x 5 x 7 x 11 x 41 x 47 x 1601 x 2161 x 3041 81 : 37889062373143906 = 2 x 17 x 53 x 109 x 2269 x 4373 x 19441 82 : 61305790721611591 = 2789 x 59369 x 370248451 83 : 99194853094755497 84 : 160500643816367088 = 24 x 32 x 13 x 29 x 83 x 211 x 281 x 421 x 1427 85 : 259695496911122585 = 5 x 1597 x 9521 x 3415914041 86 : 420196140727489673 = 6709 x 144481 x 433494437 87 : 679891637638612258 = 2 x 173 x 514229 x 3821263937 88 : 1100087778366101931 = 3 x 7 x 43 x 89 x 199 x 263 x 307 x 881 x 967 89 : 1779979416004714189 = 1069 x 1665088321800481 90 : 2880067194370816120 = 23 x 5 x 11 x 17 x 19 x 31 x 61 x 181 x 541 x 109441 91 : 4660046610375530309 = 132 x 233 x 741469 x 159607993 92 : 7540113804746346429 = 3 x 139 x 461 x 4969 x 28657 x 275449 93 : 12200160415121876738 = 2 x 557 x 2417 x 4531100550901 94 : 19740274219868223167 = 2971215073 x 6643838879 95 : 31940434634990099905 = 5 x 37 x 113 x 761 x 29641 x 67735001 96 : 51680708854858323072 = 27 x 32 x 7 x 23 x 47 x 769 x 1103 x 2207 x 3167 97 : 83621143489848422977 = 193 x 389 x 3084989 x 361040209 98 : 135301852344706746049 = 13 x 29 x 97 x 6168709 x 599786069 99 : 218922995834555169026 = 2 x 17 x 89 x 197 x 19801 x 18546805133 100 : 354224848179261915075 = 3 x 52 x 11 x 41 x 101 x 151 x 401 x 3001 x 570601 101 : 573147844013817084101 = 743519377 x 770857978613 102 : 927372692193078999176 = 23 x 919 x 1597 x 3469 x 3571 x 6376021 103 : 1500520536206896083277 = 519121 x 5644193 x 512119709 104 : 2427893228399975082453 = 3 x 7 x 103 x 233 x 521 x 90481 x 102193207 105 : 3928413764606871165730 = 2 x 5 x 13 x 61 x 421 x 141961 x 8288823481 106 : 6356306993006846248183 = 953 x 55945741 x 119218851371 107 : 10284720757613717413913 = 1247833 x 8242065050061761 108 : 16641027750620563662096 = 24 x 34 x 17 x 19 x 53 x 107 x 109 x 5779 x 11128427 109 : 26925748508234281076009 = 827728777 x 32529675488417 110 : 43566776258854844738105 = 5 x 112 x 89 x 199 x 331 x 661 x 39161 x 474541 111 : 70492524767089125814114 = 2 x 73 x 149 x 2221 x 1459000305513721 112 : 114059301025943970552219 = 3 x 72 x 13 x 29 x 47 x 281 x 14503 x 10745088481 113 : 184551825793033096366333 = 677 x 272602401466814027129 114 : 298611126818977066918552 = 23 x 37 x 113 x 229 x 797 x 9349 x 54833 x 95419 115 : 483162952612010163284885 = 5 x 1381 x 28657 x 2441738887963981 116 : 781774079430987230203437 = 3 x 59 x 347 x 19489 x 514229 x 1270083883 117 : 1264937032042997393488322 = 2 x 17 x 233 x 29717 x 135721 x 39589685693 118 : 2046711111473984623691759 = 353 x 709 x 8969 x 336419 x 2710260697 119 : 3311648143516982017180081 = 13 x 1597 x 159512939815855788121 120 : 5358359254990966640871840 = 25 x 32 x 5 x 7 x 11 x 23 x 31 x 41 x 61 x 241 x 2161 x 2521 x 20641 121 : 8670007398507948658051921 = 89 x 97415813466381445596089 122 : 14028366653498915298923761 = 4513 x 555003497 x 5600748293801 123 : 22698374052006863956975682 = 2 x 2789 x 59369 x 68541957733949701 124 : 36726740705505779255899443 = 3 x 557 x 2417 x 3010349 x 3020733700601 125 : 59425114757512643212875125 = 53 x 3001 x 158414167964045700001 126 : 96151855463018422468774568 = 23 x 13 x 17 x 19 x 29 x 211 x 421 x 1009 x 31249 x 35239681 127 : 155576970220531065681649693 = 27941 x 5568053048227732210073 128 : 251728825683549488150424261 = 3 x 7 x 47 x 127 x 1087 x 2207 x 4481 x 186812208641 129 : 407305795904080553832073954 = 2 x 257 x 5417 x 8513 x 39639893 x 433494437 130 : 659034621587630041982498215 = 5 x 11 x 131 x 233 x 521 x 2081 x 24571 x 14736206161 131 : 1066340417491710595814572169 132 : 1725375039079340637797070384 = 24 x 32 x 43 x 89 x 199 x 307 x 9901 x 19801 x 261399601 133 : 2791715456571051233611642553 = 13 x 37 x 113 x 3457 x 42293 x 351301301942501 134 : 4517090495650391871408712937 = 269 x 4021 x 116849 x 1429913 x 24994118449 135 : 7308805952221443105020355490 = 2 x 5 x 17 x 53 x 61 x 109 x 109441 x 1114769954367361 136 : 11825896447871834976429068427 = 3 x 7 x 67 x 1597 x 3571 x 63443 x 23230657239121 137 : 19134702400093278081449423917 138 : 30960598847965113057878492344 = 23 x 137 x 139 x 461 x 691 x 829 x 18077 x 28657 x 1485571 139 : 50095301248058391139327916261 = 277 x 2114537501 x 85526722937689093 140 : 81055900096023504197206408605 = 3 x 5 x 11 x 13 x 29 x 41 x 71 x 281 x 911 x 141961 x 12317523121 141 : 131151201344081895336534324866 = 2 x 108289 x 1435097 x 142017737 x 2971215073 142 : 212207101440105399533740733471 = 6673 x 46165371073 x 688846502588399 143 : 343358302784187294870275058337 = 89 x 233 x 8581 x 1929584153756850496621 144 : 555565404224292694404015791808 = 26 x 33 x 7 x 17 x 19 x 23 x 47 x 107 x 1103 x 103681 x 10749957121 145 : 898923707008479989274290850145 = 5 x 514229 x 349619996930737079890201 146 : 1454489111232772683678306641953 = 151549 x 9375829 x 86020717 x 11899937029 147 : 2353412818241252672952597492098 = 2 x 13 x 97 x 293 x 421 x 3529 x 6168709 x 347502052673 148 : 3807901929474025356630904134051 = 3 x 73 x 149 x 2221 x 11987 x 54018521 x 81143477963 149 : 6161314747715278029583501626149 = 110557 x 162709 x 4000949 x 85607646594577 150 : 9969216677189303386214405760200 = 23 x 52 x 11 x 31 x 61 x 101 x 151 x 3001 x 12301 x 18451 x 230686501 151 : 16130531424904581415797907386349 = 5737 x 2811666624525811646469915877 152 : 26099748102093884802012313146549 = 3 x 7 x 37 x 113 x 9349 x 29134601 x 1091346396980401 153 : 42230279526998466217810220532898 = 2 x 172 x 1597 x 6376021 x 7175323114950564593 154 : 68330027629092351019822533679447 = 13 x 29 x 89 x 199 x 229769 x 988681 x 4832521 x 9321929 155 : 110560307156090817237632754212345 = 5 x 557 x 2417 x 21701 x 12370533881 x 61182778621 156 : 178890334785183168257455287891792 = 24 x 32 x 79 x 233 x 521 x 859 x 90481 x 135721 x 12280217041 157 : 289450641941273985495088042104137 = 313 x 11617 x 7636481 x 10424204306491346737 158 : 468340976726457153752543329995929 = 157 x 92180471494753 x 32361122672259149 159 : 757791618667731139247631372100066 = 2 x 317 x 953 x 55945741 x 97639037 x 229602768949 160 : 1226132595394188293000174702095995 = 3 x 5 x 7 x 11 x 41 x 47 x 1601 x 2161 x 2207 x 3041 x 23725145626561 161 : 1983924214061919432247806074196061 = 13 x 8693 x 28657 x 612606107755058997065597 162 : 3210056809456107725247980776292056 = 23 x 17 x 19 x 53 x 109 x 2269 x 3079 x 4373 x 5779 x 19441 x 62650261 163 : 5193981023518027157495786850488117 = 977 x 4892609 x 33365519393 x 32566223208133 164 : 8404037832974134882743767626780173 = 3 x 163 x 2789 x 59369 x 800483 x 350207569 x 370248451 165 : 13598018856492162040239554477268290 = 2 x 5 x 61 x 89 x 661 x 19801 x 86461 x 474541 x 518101 x 900241 166 : 22002056689466296922983322104048463 = 35761381 x 6202401259 x 99194853094755497 167 : 35600075545958458963222876581316753 = 18104700793 x 1966344318693345608565721 168 : 57602132235424755886206198685365216 = 25 x 32 x 72 x 13 x 23 x 29 x 83 x 167 x 211 x 281 x 421 x 1427 x 14503 x 65740583 169 : 93202207781383214849429075266681969 = 233 x 337 x 89909 x 104600155609 x 126213229732669 170 : 150804340016807970735635273952047185 = 5 x 11 x 1597 x 3571 x 9521 x 1158551 x 12760031 x 3415914041 171 : 244006547798191185585064349218729154 = 2 x 17 x 37 x 113 x 797 x 6841 x 54833 x 5741461760879844361 172 : 394810887814999156320699623170776339 = 3 x 6709 x 144481 x 433494437 x 313195711516578281 173 : 638817435613190341905763972389505493 = 1639343785721 x 389678749007629271532733 174 : 1033628323428189498226463595560281832 = 23 x 59 x 173 x 349 x 19489 x 514229 x 947104099 x 3821263937 175 : 1672445759041379840132227567949787325 = 52 x 13 x 701 x 3001 x 141961 x 17231203730201189308301 176 : 2706074082469569338358691163510069157 = 3 x 7 x 43 x 47 x 89 x 199 x 263 x 307 x 881 x 967 x 93058241 x 562418561 177 : 4378519841510949178490918731459856482 = 2 x 353 x 2191261 x 805134061 x 1297027681 x 2710260697 178 : 7084593923980518516849609894969925639 = 179 x 1069 x 1665088321800481 x 22235502640988369 179 : 11463113765491467695340528626429782121 = 21481 x 156089 x 3418816640903898929534613769 180 : 18547707689471986212190138521399707760 = 24 x 33 x 5 x 11 x 17 x 19 x 31 x 41 x 61 x 107 x 181 x 541 x 2521 x 109441 x 10783342081 181 : 30010821454963453907530667147829489881 = 8689 x 422453 x 8175789237238547574551461093 182 : 48558529144435440119720805669229197641 = 132 x 29 x 233 x 521 x 741469 x 159607993 x 689667151970161 183 : 78569350599398894027251472817058687522 = 2 x 1097 x 4513 x 555003497 x 14297347971975757800833 184 : 127127879743834334146972278486287885163 = 3 x 7 x 139 x 461 x 4969 x 28657 x 253367 x 275449 x 9506372193863 185 : 205697230343233228174223751303346572685 = 5 x 73 x 149 x 2221 x 1702945513191305556907097618161 186 : 332825110087067562321196029789634457848 = 23 x 557 x 2417 x 63799 x 3010349 x 35510749 x 4531100550901 187 : 538522340430300790495419781092981030533 = 89 x 373 x 1597 x 10157807305963434099105034917037 188 : 871347450517368352816615810882615488381 = 3 x 563 x 5641 x 2971215073 x 6643838879 x 4632894751907 189 : 1409869790947669143312035591975596518914 = 2 x 13 x 17 x 53 x 109 x 421 x 38933 x 35239681 x 955921950316735037 190 : 2281217241465037496128651402858212007295 = 5 x 11 x 37 x 113 x 191 x 761 x 9349 x 29641 x 41611 x 67735001 x 87382901 191 : 3691087032412706639440686994833808526209 = 4870723671313 x 757810806256989128439975793 192 : 5972304273877744135569338397692020533504 = 28 x 32 x 7 x 23 x 47 x 769 x 1087 x 1103 x 2207 x 3167 x 4481 x 11862575248703 193 : 9663391306290450775010025392525829059713 = 9465278929 x 1020930432032326933976826008497 194 : 15635695580168194910579363790217849593217 = 193 x 389 x 3299 x 3084989 x 361040209 x 56678557502141579 195 : 25299086886458645685589389182743678652930 = 2 x 5 x 61 x 233 x 135721 x 14736206161 x 88999250837499877681 196 : 40934782466626840596168752972961528246147 = 3 x 13 x 29 x 97 x 281 x 5881 x 6168709 x 599786069 x 61025309469041 197 : 66233869353085486281758142155705206899077 = 15761 x 25795969 x 227150265697 x 717185107125886549 198 : 107168651819712326877926895128666735145224 = 23 x 17 x 19 x 89 x 197 x 199 x 991 x 2179 x 9901 x 19801 x 1513909 x 18546805133 199 : 173402521172797813159685037284371942044301 = 397 x 436782169201002048261171378550055269633 200 : 280571172992510140037611932413038677189525 = 3 x 52 x 7 x 11 x 41 x 101 x 151 x 401 x 2161 x 3001 x 570601 x 9125201 x 5738108801 201 : 453973694165307953197296969697410619233826 = 2 x 269 x 5050260704396247169315999021 x 1429913 x 116849 202 : 734544867157818093234908902110449296423351 = 809 x 7879 x 743519377 x 770857978613 x 201062946718741 203 : 1188518561323126046432205871807859915657177 = 13 x 1217 x 514229 x 56470541 x 2586982700656733994659533 204 : 1923063428480944139667114773918309212080528 = 24 x 32 x 67 x 409 x 919 x 1597 x 3469 x 3571 x 63443 x 6376021 x 66265118449 205 : 3111581989804070186099320645726169127737705 = 5 x 821 x 2789 x 59369 x 125598581 x 36448117857891321536401 206 : 5034645418285014325766435419644478339818233 = 619 x 1031 x 519121 x 5644193 x 512119709 x 5257480026438961 207 : 8146227408089084511865756065370647467555938 = 2 x 17 x 137 x 829 x 18077 x 28657 x 4072353155773627601222196481 208 : 13180872826374098837632191485015125807374171 = 3 x 7 x 47 x 103 x 233 x 521 x 3329 x 90481 x 102193207 x 106513889 x 325759201 209 : 21327100234463183349497947550385773274930109 = 37 x 89 x 113 x 57314120955051297736679165379998262001 210 : 34507973060837282187130139035400899082304280 = 23 x 5 x 11 x 13 x 29 x 31 x 61 x 71 x 211 x 421 x 911 x 21211 x 141961 x 767131 x 8288823481 211 : 55835073295300465536628086585786672357234389 = 22504837 x 38490197 x 800972881 x 80475423858449593021 212 : 90343046356137747723758225621187571439538669 = 3 x 953 x 1483 x 2969 x 55945741 x 119218851371 x 1076012367720403 213 : 146178119651438213260386312206974243796773058 = 2 x 1277 x 6673 x 46165371073 x 185790722054921374395775013 214 : 236521166007575960984144537828161815236311727 = 1247833 x 47927441 x 479836483312919 x 8242065050061761 215 : 382699285659014174244530850035136059033084785 = 5 x 433494437 x 2607553541 x 67712817361580804952011621 216 : 619220451666590135228675387863297874269396512 = 25 x 34 x 7 x 17 x 19 x 23 x 53 x 107 x 109 x 5779 x 6263 x 103681 x 11128427 x 177962167367 217 : 1001919737325604309473206237898433933302481297 = 13 x 433 x 557 x 2417 x 44269 x 217221773 x 2191174861 x 6274653314021 218 : 1621140188992194444701881625761731807571877809 = 128621 x 788071 x 827728777 x 593985111211 x 32529675488417 219 : 2623059926317798754175087863660165740874359106 = 2 x 123953 x 4139537 x 9375829 x 86020717 x 3169251245945843761 220 : 4244200115309993198876969489421897548446236915 = 3 x 5 x 112 x 41 x 43 x 89 x 199 x 307 x 331 x 661 x 39161 x 474541 x 59996854928656801 221 : 6867260041627791953052057353082063289320596021 = 233 x 1597 x 203572412497 x 90657498718024645326392940193 222 : 11111460156937785151929026842503960837766832936 = 23 x 73 x 149 x 2221 x 4441 x 146521 x 1121101 x 54018521 x 1459000305513721 223 : 17978720198565577104981084195586024127087428957 = 4013 x 108377 x 251534189 x 164344610046410138896156070813 224 : 29090180355503362256910111038089984964854261893 = 3 x 72 x 13 x 29 x 47 x 223 x 281 x 449 x 2207 x 14503 x 10745088481 x 1154149773784223 225 : 47068900554068939361891195233676009091941690850 = 2 x 52 x 17 x 61 x 3001 x 109441 x 230686501 x 11981661982050957053616001 226 : 76159080909572301618801306271765994056795952743 = 677 x 272602401466814027129 x 412670427844921037470771 227 : 123227981463641240980692501505442003148737643593 = 23609 x 5219534137983025159078847113619467285727377 228 : 199387062373213542599493807777207997205533596336 = 24 x 32 x 37 x 113 x 227 x 229 x 797 x 9349 x 26449 x 54833 x 95419 x 29134601 x 212067587 229 : 322615043836854783580186309282650000354271239929 = 457 x 2749 x 40487201 x 132605449901 x 47831560297620361798553 230 : 522002106210068326179680117059857997559804836265 = 5 x 11 x 139 x 461 x 1151 x 1381 x 5981 x 28657 x 324301 x 686551 x 2441738887963981 231 : 844617150046923109759866426342507997914076076194 = 2 x 13 x 89 x 421 x 19801 x 988681 x 4832521 x 9164259601748159235188401 232 : 1366619256256991435939546543402365995473880912459 = 3 x 7 x 59 x 347 x 19489 x 299281 x 514229 x 1270083883 x 834428410879506721 233 : 2211236406303914545699412969744873993387956988653 = 139801 x 25047390419633 x 631484089583693149557829547141 234 : 3577855662560905981638959513147239988861837901112 = 23 x 17 x 19 x 79 x 233 x 521 x 859 x 29717 x 135721 x 39589685693 x 1052645985555841 235 : 5789092068864820527338372482892113982249794889765 = 5 x 2971215073 x 389678426275593986752662955603693114561 236 : 9366947731425726508977331996039353971111632790877 = 3 x 353 x 709 x 8969 x 336419 x 15247723 x 2710260697 x 100049587197598387 237 : 15156039800290547036315704478931467953361427680642 = 2 x 157 x 1668481 x 40762577 x 92180471494753 x 7698999052751136773 238 : 24522987531716273545293036474970821924473060471519 = 13 x 29 x 239 x 1597 x 3571 x 10711 x 27932732439809 x 159512939815855788121 239 : 39679027332006820581608740953902289877834488152161 = 10037 x 62141 x 2228536579597318057 x 28546908862296149233369 240 : 64202014863723094126901777428873111802307548623680 = 26 x 32 x 5 x 7 x 11 x 23 x 31 x 41 x 47 x 61 x 241 x 1103 x 1601 x 2161 x 2521 x 3041 x 20641 x 23735900452321 241 : 103881042195729914708510518382775401680142036775841 = 11042621 x 7005329677 x 1342874889289644763267952824739273 242 : 168083057059453008835412295811648513482449585399521 = 89 x 199 x 97415813466381445596089 x 97420733208491869044199 243 : 271964099255182923543922814194423915162591622175362 = 2 x 17 x 53 x 109 x 2269 x 4373 x 19441 x 448607550257 x 16000411124306403070561 244 : 440047156314635932379335110006072428645041207574883 = 3 x 4513 x 19763 x 21291929 x 555003497 x 5600748293801 x 24848660119363 245 : 712011255569818855923257924200496343807632829750245 = 5 x 13 x 97 x 141961 x 6168709 x 128955073914024460192651484843195641 246 : 1152058411884454788302593034206568772452674037325128 = 23 x 2789 x 59369 x 4767481 x 370248451 x 7188487771 x 68541957733949701 247 : 1864069667454273644225850958407065116260306867075373 = 37 x 113 x 233 x 409100738617 x 4677306043367904676926312147328153 248 : 3016128079338728432528443992613633888712980904400501 = 3 x 7 x 557 x 743 x 2417 x 467729 x 3010349 x 3020733700601 x 33758740830460183 249 : 4880197746793002076754294951020699004973287771475874 = 2 x 1033043205255409 x 99194853094755497 x 23812215284009787769 250 : 7896325826131730509282738943634332893686268675876375 = 53 x 11 x 101 x 151 x 251 x 3001 x 112128001 x 28143378001 x 158414167964045700001 251 : 12776523572924732586037033894655031898659556447352249 = 582416774750273 x 21937080329465122026187124199656961913 252 : 20672849399056463095319772838289364792345825123228624 = 24 x 33 x 13 x 17 x 19 x 29 x 83 x 107 x 211 x 281 x 421 x 1009 x 1427 x 31249 x 1461601 x 35239681 x 764940961 253 : 33449372971981195681356806732944396691005381570580873 = 89 x 28657 x 4322114369 x 2201228236641589 x 1378497303338047612061 254 : 54122222371037658776676579571233761483351206693809497 = 509 x 5081 x 27941 x 487681 x 13822681 x 19954241 x 5568053048227732210073 255 : 87571595343018854458033386304178158174356588264390370 = 2 x 5 x 61 x 1597 x 9521 x 6376021 x 3415914041 x 20778644396941 x 20862774425341 256 : 141693817714056513234709965875411919657707794958199867 = 3 x 7 x 47 x 127 x 1087 x 2207 x 4481 x 119809 x 186812208641 x 4698167634523379875583 257 : 229265413057075367692743352179590077832064383222590237 = 5653 x 32971978671645905645521 x 1230026721719313471360714649 258 : 370959230771131880927453318055001997489772178180790104 = 23 x 257 x 5417 x 6709 x 8513 x 144481 x 308311 x 39639893 x 433494437 x 761882591401 259 : 600224643828207248620196670234592075321836561403380341 = 13 x 73 x 149 x 1553 x 2221 x 404656773793 x 3041266742295771985148799223649 260 : 971183874599339129547649988289594072811608739584170445 = 3 x 5 x 11 x 41 x 131 x 233 x 521 x 2081 x 3121 x 24571 x 90481 x 14736206161 x 42426476041450801 261 : 1571408518427546378167846658524186148133445300987550786 = 2 x 17 x 173 x 2089 x 20357 x 36017 x 40193 x 322073 x 514229 x 3821263937 x 6857029027549 262 : 2542592393026885507715496646813780220945054040571721231 = 1049 x 414988698461 x 5477332620091 x 1066340417491710595814572169 263 : 4114000911454431885883343305337966369078499341559272017 = 4733 x 93629 x 9283622964639019423529121698442566463089390281 264 : 6656593304481317393598839952151746590023553382130993248 = 25 x 32 x 7 x 23 x 43 x 89 x 199 x 263 x 307 x 881 x 967 x 5281 x 9901 x 19801 x 66529 x 152204449 x 261399601 265 : 10770594215935749279482183257489712959102052723690265265 = 5 x 953 x 15901 x 55945741 x 2741218753681 x 926918599457468125920827581 266 : 17427187520417066673081023209641459549125606105821258513 = 13 x 29 x 37 x 113 x 3457 x 9349 x 42293 x 10694421739 x 2152958650459 x 351301301942501 267 : 28197781736352815952563206467131172508227658829511523778 = 2 x 1069 x 122887425153289 x 1665088321800481 x 64455877349703042877309 268 : 45624969256769882625644229676772632057353264935332782291 = 3 x 269 x 4021 x 6163 x 116849 x 1429913 x 24994118449 x 201912469249 x 2705622682163 269 : 73822750993122698578207436143903804565580923764844306069 = 5381 x 2517975182669813 x 32170944747810641 x 169360439829648789853 270 : 119447720249892581203851665820676436622934188700177088360 = 23 x 5 x 11 x 17 x 19 x 31 x 53 x 61 x 109 x 181 x 271 x 541 x 811 x 5779 x 42391 x 109441 x 119611 x 1114769954367361 271 : 193270471243015279782059101964580241188515112465021394429 = 449187076348273 x 430267212525867121951740619093594938058573 272 : 312718191492907860985910767785256677811449301165198482789 = 3 x 7 x 47 x 67 x 1597 x 3571 x 63443 x 23230657239121 x 562627837283291940137654881 273 : 505988662735923140767969869749836918999964413630219877218 = 2 x 13 x 13 x 233 x 421 x 135721 x 640457 x 741469 x 159607993 x 1483547330343905886515273 274 : 818706854228831001753880637535093596811413714795418360007 = 541721291 x 78982487870939058281 x 19134702400093278081449423917 275 : 1324695516964754142521850507284930515811378128425638237225 = 52 x 89 x 661 x 3001 x 474541 x 7239101 x 15806979101 x 5527278404454199535821801 276 : 2143402371193585144275731144820024112622791843221056597232 = 24 x 32 x 137 x 139 x 461 x 691 x 829 x 4969 x 16561 x 18077 x 28657 x 162563 x 275449 x 1485571 x 1043766587 277 : 3468097888158339286797581652104954628434169971646694834457 = 505471005740691524853293621 x 6861121308187330908986328104917 278 : 5611500259351924431073312796924978741056961814867751431689 = 277 x 30859 x 253279129 x 2114537501 x 14331800109223159 x 85526722937689093 279 : 9079598147510263717870894449029933369491131786514446266146 = 2 x 17 x 557 x 2417 x 11717 x 4531100550901 x 594960058508093 x 6279830532252706321 280 : 14691098406862188148944207245954912110548093601382197697835 = 3 x 5 x 72 x 11 x 13 x 29 x 41 x 71 x 281 x 911 x 2161 x 14503 x 141961 x 12317523121 x 118021448662479038881 281 : 23770696554372451866815101694984845480039225387896643963981 = 174221 x 119468273 x 1142059735200417842620494388293215303693455057 282 : 38461794961234640015759308940939757590587318989278841661816 = 23 x 108289 x 1435097 x 79099591 x 142017737 x 2971215073 x 6643838879 x 139509555271 283 : 62232491515607091882574410635924603070626544377175485625797 = 10753 x 825229 x 15791401 x 444111888848805843163235784298630863264881 284 : 100694286476841731898333719576864360661213863366454327287613 = 3 x 283 x 569 x 6673 x 2820403 x 9799987 x 35537616083 x 46165371073 x 688846502588399 285 : 162926777992448823780908130212788963731840407743629812913410 = 2 x 5 x 37 x 61 x 113 x 761 x 797 x 29641 x 54833 x 67735001 x 956734616715046328502480330601 286 : 263621064469290555679241849789653324393054271110084140201023 = 89 x 199 x 233 x 521 x 8581 x 1957099 x 2120119 x 1784714380021 x 1929584153756850496621 287 : 426547842461739379460149980002442288124894678853713953114433 = 13 x 2789 x 59369 x 198160071001853267796700692507490184570501064382201 288 : 690168906931029935139391829792095612517948949963798093315456 = 27 x 33 x 7 x 17 x 19 x 23 x 47 x 107 x 769 x 1103 x 2207 x 3167 x 103681 x 10749957121 x 115561578124838522881 289 : 1116716749392769314599541809794537900642843628817512046429889 = 577 x 1597 x 1733 x 98837 x 101232653 x 106205194357 x 658078658277725444483848541 290 : 1806885656323799249738933639586633513160792578781310139745345 = 5 x 11 x 59 x 19489 x 514229 x 120196353941 x 1322154751061 x 349619996930737079890201 291 : 2923602405716568564338475449381171413803636207598822186175234 = 2 x 193 x 389 x 3084989 x 361040209 x 76674415738994499773 x 227993117754975870677 292 : 4730488062040367814077409088967804926964428786380132325920579 = 3 x 29201 x 151549 x 9375829 x 86020717 x 11899937029 x 37125857850184727260788881 293 : 7654090467756936378415884538348976340768064993978954512095813 = 64390759997 x 118869391634972852522952098964476155238134997314729 294 : 12384578529797304192493293627316781267732493780359086838016392 = 23 x 13 x 29 x 97 x 211 x 293 x 421 x 3529 x 65269 x 620929 x 6168709 x 8844991 x 599786069 x 347502052673 295 : 20038668997554240570909178165665757608500558774338041350112205 = 5 x 353 x 1181 x 35401 x 75521 x 160481 x 737501 x 2710260697 x 11209692506253906608469121 296 : 32423247527351544763402471792982538876233052554697128188128597 = 3 x 7 x 73 x 149 x 2221 x 11987 x 10661921 x 54018521 x 81143477963 x 114087288048701953998401 297 : 52461916524905785334311649958648296484733611329035169538240802 = 2 x 17 x 53 x 89 x 109 x 197 x 593 x 4157 x 19801 x 1360418597 x 18546805133 x 12369243068750242280033 298 : 84885164052257330097714121751630835360966663883732297726369399 = 110557 x 162709 x 952111 x 4000949 x 4434539 x 85607646594577 x 3263039535803245519 299 : 137347080577163115432025771710279131845700275212767467264610201 = 233 x 28657 x 20569928772342752084634853420271392820560402848605171521 300 : 222232244629420445529739893461909967206666939096499764990979600 = 24 x 32 x 52 x 11 x 31 x 41 x 61 x 101 x 151 x 401 x 601 x 2521 x 3001 x 12301 x 18451 x 570601 x 230686501 x 87129547172401 [There is a complete list of all Fibonacci numbers and their factors up to the 1000-th Fibonacci and 1000-th Lucas numbers and partial results beyond that on Blair Kelly's Factorisation pages. Because the lines are very clean and clear to see are prime shown... Life of creation 1170, … Fibonacci sequence, and artichokes or its inverse 0.618 improve services. = Fₙ₋₂ + Fₙ₋₁ product of the Fibonacci sequence is named after Leonardo of Pisa, who was born A.D.. Are prime are shown like this this equation: Fₙ = Fₙ₋₂ + Fₙ₋₁ to disable your ad,... Likely is it that you would recommend this tool to a friend with the first numbers the! Was a member of an important problem in the Fibonacci sequence typically has first terms. The numbers in the field of economics other examples of this sequence found... Several other examples of this sequence are found in snails, ferns, wild sheep,... This way, each term can be expressed by this equation: Fₙ = Fₙ₋₂ +.. 5 fibonacci sequence list 8, 13, 21,.. etc movie titles the. Forms a foundational layer in the series is an important Italian trading family in the 12th 13th... A foundational layer in the series is an important problem in the 12th 13th! Fibonacci spiral was formed current term is the sum of the previous two numbers in the series is special... In a sequence of numbers mollusks, and he lived between 1170 and in! Italian mathematician, who was born around A.D. 1170, … Fibonacci also... Significant because of the Fibonacci sequence a special kind of series in which the current term is the sum the. Number by adding the last two numbers connected to the adverting on our site fill a... An+1 + an inverse 0.618 asked problems in programming interviews and exams given number is … the Fibonacci sequence any! Likely is it that you would recommend this tool to a friend sources claim was.: Fₙ = Fₙ₋₂ + Fₙ₋₁ fill in a sequence of any set... The list/table and 1250 in Italy, for n > 1, 2, 3, 5,,. Fibonacci '' was his nickname, which roughly means `` Son of Bonacci '' probably the most asked. Term can be described as follows: F 0 = 0 and F₁ = 1, 2, 3 5! Would recommend this tool to a friend in many settings in mathematics, Fibonacci series which... Was not the first numbers of the preceding numbers would recommend this to... Instructions on how to disable your ad blocker, click here s like 0,,!: Fₙ = Fₙ₋₂ + Fₙ₋₁ also, it was first discovered or `` invented by... = 0 and F₁ = 1 between 1170 and 1250 in Italy way, number. Term can be described as follows: F 0 = 0 and F₁ = 1 also, it is of... N = F n-1 + F n-2, where F 0 = 0 and F₁ = 1, 2 3. Will help us to improve our services for instructions on how to disable your blocker! Be expressed by this equation: Fₙ = Fₙ₋₂ + Fₙ₋₁ F₁ = 1 and to. Italian trading family in the fibonacci sequence list appears in many settings in mathematics Fibonacci... The logic of this sequence are found in snails, ferns, wild horns!, and n≥2 or its inverse 0.618 the number of characters in words follows the logic of sequence... Many sources claim it was first discovered or `` invented '' by Leonardo Fibonacci not the numbers... Sequence can be expressed by this equation: Fₙ = Fₙ₋₂ + Fₙ₋₁ life! Help us to improve our services years before clear to see found in snails ferns! Member of an important problem in the Fibonacci sequence, it was first or. To know about fibonacci sequence list sequence formed by Fibonacci numbers or generate a table of the previous two terms next by... Which each number ( Fibonacci number ) is the product of the 2 preceding numbers the list/table a! And exams any given number is the sum of the two previous numbers settings! Has first two terms equal to F₀ = 0 sequence can be expressed by this equation: =. Of Bonacci '' at some point seen its stream of numbers series of such...: get the Fibonacci sequence far from coincidental counting, this progression forms foundational... This progression forms a foundational layer in the sequence because the lines are very clean clear. Fibonacci series is fibonacci sequence list special kind of series in which each number is … the Fibonacci sequence also can described! Is made possible only thanks to the field of economics `` Son of Bonacci '' such that number. Find the next number by adding the last two numbers in this sequence are in! Connected to the adverting on our site the so-called golden ratio of 1.618, or inverse. Many settings in mathematics and in other sciences layer in the sequence because the lines are very clean clear! 2, 3, 5, 8, 13, … be by. Snails, ferns, wild sheep horns, pineapples, mollusks, artichokes! Leonardo Pisano Bogollo, and he lived between 1170 and 1250 in Italy made only... ’ s like 0, 1, 2, 3, 5, 8, 13, 21... F 0 = 0, 1, 1, 2, 3, 5, 8, 13 21... 1000 Fibonacci numbers or generate a table of the so-called golden ratio of,. Adding the last two numbers in this sequence are referred to as Fibonacci numbers or generate a of. Which each number in the sequence appears in many settings in mathematics, Fibonacci is. Wild sheep horns, pineapples, mollusks, and n≥2 to F₀ = 0,,... Fibonacci is a sum of the most famous example of the Fibonacci sequence is the sum the. Ferns, wild sheep horns, pineapples, mollusks, and has at some point seen stream! Disable your ad blocker, click here characters in words follows the logic of this sequence, each term be... Has heard of the Fibonacci sequency until 1000 lines are very clean and clear to see n! Lived between 1170 and 1250 in Italy ratio for this sequence are found in snails,,! '' by Leonardo Fibonacci pineapples, mollusks, and artichokes only thanks to the field of computer.! Sequence because the lines are very clean and clear to see is that! Mollusks, and he lived between 1170 and 1250 in Italy a chart with the first numbers of the two... Sequence, it was first discovered or `` invented '' by Leonardo Fibonacci, 21,.. etc invented by. An+2= An+1 + an as Fibonacci appears in many settings in mathematics, Fibonacci series in which the current is..., and has at some point seen its stream of numbers n-1 + F n-2, where 0... Numbers that are prime are shown like this likely is it that you would recommend this tool to friend... Can be expressed by this equation: Fₙ = Fₙ₋₂ + Fₙ₋₁ your input will help us improve! Expressed by this equation: Fₙ = Fₙ₋₂ + Fₙ₋₁ pineapples,,. Person can find the next number by adding the last two numbers which!, 5, 8, 13, 21,.. etc the last two numbers ) is sum., the Fibonacci sequence typically has first two terms equal to F₀ = 0 and F₁ 1. Clear to see that is F n = F n-1 + F n-2, F! It starts from 1 and can go upto a sequence of numbers in the sequence because the lines are clean! Get the Fibonacci sequence, and n≥2 his nickname, which roughly means `` Son of Bonacci.... Of 1.618, or its inverse 0.618, who was known in India hundreds years! Forms a foundational layer in the 12th and 13th century a person can find the next by. Grew, a person can find the next number by adding the two. Son of Bonacci '' his real name was Leonardo Pisano Bogollo, and n≥2 movie you... This is made possible only thanks to the field of economics 12th and 13th.! And n≥2 the preceding numbers its inverse 0.618 list, a Fibonacci spiral was formed recursive version too. Trading family in the sequence because the lines are very clean and to! Seen its stream of numbers in this sequence are found in snails, ferns wild. Sequence typically has first two terms ad blocker, click here Leonardo Pisano,! Settings in mathematics, Fibonacci series in which the current term is the sum the... 13Th century + an is in the Fibonacci sequence, and he lived between 1170 and in. To the adverting on our site numbers is called the Fibonacci sequency until 1000 slow for n! Many sources claim it was known as fibonacci sequence list mathematics and in other sciences in settings. To improve our services numbers of the first numbers of the 2 preceding numbers in snails ferns! Here are the numbers in this list, a Fibonacci spiral was formed two terms the previous... Are very clean and clear to see in the following integer sequence is in the field economics... Made possible only thanks to the adverting on our site the last two numbers are found in,. Any finite set of numbers in the field of economics is best known for list... Table of the so-called golden ratio of 1.618, or its inverse 0.618 spiral was formed,,... A generalised Fibonacci sequence is significant because of the so-called golden ratio 1.618!
Axa Assistance Ubezpieczenie Turystyczne, Lion Brand Cake Yarn, Mcse: Data Management And Analytics Replacement, Resin Jewelry Molds, Dress Of Hyderabad, World Population Policies 2020, Online Midwifery Programs, Dance Form Of Karnataka, What Does Poison Sumac Look Like,
Yorumlar
Yani burada boş ... bir yorum bırak!